Package: forestError 1.1.0
forestError: A Unified Framework for Random Forest Prediction Error Estimation
Estimates the conditional error distributions of random forest predictions and common parameters of those distributions, including conditional misclassification rates, conditional mean squared prediction errors, conditional biases, and conditional quantiles, by out-of-bag weighting of out-of-bag prediction errors as proposed by Lu and Hardin (2021). This package is compatible with several existing packages that implement random forests in R.
Authors:
forestError_1.1.0.tar.gz
forestError_1.1.0.zip(r-4.5)forestError_1.1.0.zip(r-4.4)forestError_1.1.0.zip(r-4.3)
forestError_1.1.0.tgz(r-4.4-any)forestError_1.1.0.tgz(r-4.3-any)
forestError_1.1.0.tar.gz(r-4.5-noble)forestError_1.1.0.tar.gz(r-4.4-noble)
forestError_1.1.0.tgz(r-4.4-emscripten)forestError_1.1.0.tgz(r-4.3-emscripten)
forestError.pdf |forestError.html✨
forestError/json (API)
NEWS
# Install 'forestError' in R: |
install.packages('forestError', repos = c('https://benjilu.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/benjilu/foresterror/issues
inferenceintervalsmachine-learningmachinelearningpredictionrandom-forestrandomforeststatistics
Last updated 3 years agofrom:5d9c4b2d01. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | OK | Nov 08 2024 |
R-4.5-linux | OK | Nov 08 2024 |
R-4.4-win | OK | Nov 08 2024 |
R-4.4-mac | OK | Nov 08 2024 |
R-4.3-win | OK | Nov 08 2024 |
R-4.3-mac | OK | Nov 08 2024 |
Exports:findOOBErrorsquantForestError
Dependencies:clidata.tablegluelifecyclemagrittrpurrrrlangvctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Compute and locate out-of-bag prediction errors | findOOBErrors |
Estimated conditional prediction error CDFs | perror |
Estimated conditional prediction error quantile functions | qerror |
Quantify random forest prediction error | forestError quantForestError |