Package: forestError 1.1.0

forestError: A Unified Framework for Random Forest Prediction Error Estimation

Estimates the conditional error distributions of random forest predictions and common parameters of those distributions, including conditional misclassification rates, conditional mean squared prediction errors, conditional biases, and conditional quantiles, by out-of-bag weighting of out-of-bag prediction errors as proposed by Lu and Hardin (2021). This package is compatible with several existing packages that implement random forests in R.

Authors:Benjamin Lu and Johanna Hardin

forestError_1.1.0.tar.gz
forestError_1.1.0.zip(r-4.5)forestError_1.1.0.zip(r-4.4)forestError_1.1.0.zip(r-4.3)
forestError_1.1.0.tgz(r-4.5-any)forestError_1.1.0.tgz(r-4.4-any)forestError_1.1.0.tgz(r-4.3-any)
forestError_1.1.0.tar.gz(r-4.5-noble)forestError_1.1.0.tar.gz(r-4.4-noble)
forestError_1.1.0.tgz(r-4.4-emscripten)forestError_1.1.0.tgz(r-4.3-emscripten)
forestError.pdf |forestError.html
forestError/json (API)
NEWS

# Install 'forestError' in R:
install.packages('forestError', repos = c('https://benjilu.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/benjilu/foresterror/issues

On CRAN:

Conda-Forge:

inferenceintervalsmachine-learningmachinelearningpredictionrandom-forestrandomforeststatistics

4.62 score 26 stars 16 scripts 326 downloads 2 exports 8 dependencies

Last updated 4 years agofrom:5d9c4b2d01. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 06 2025
R-4.5-winOKFeb 06 2025
R-4.5-macOKFeb 06 2025
R-4.5-linuxOKFeb 06 2025
R-4.4-winOKFeb 06 2025
R-4.4-macOKFeb 06 2025
R-4.3-winOKFeb 06 2025
R-4.3-macOKFeb 06 2025

Exports:findOOBErrorsquantForestError

Dependencies:clidata.tablegluelifecyclemagrittrpurrrrlangvctrs