Package: forestError 1.1.0

forestError: A Unified Framework for Random Forest Prediction Error Estimation

Estimates the conditional error distributions of random forest predictions and common parameters of those distributions, including conditional misclassification rates, conditional mean squared prediction errors, conditional biases, and conditional quantiles, by out-of-bag weighting of out-of-bag prediction errors as proposed by Lu and Hardin (2021). This package is compatible with several existing packages that implement random forests in R.

Authors:Benjamin Lu and Johanna Hardin

forestError_1.1.0.tar.gz
forestError_1.1.0.zip(r-4.5)forestError_1.1.0.zip(r-4.4)forestError_1.1.0.zip(r-4.3)
forestError_1.1.0.tgz(r-4.4-any)forestError_1.1.0.tgz(r-4.3-any)
forestError_1.1.0.tar.gz(r-4.5-noble)forestError_1.1.0.tar.gz(r-4.4-noble)
forestError_1.1.0.tgz(r-4.4-emscripten)forestError_1.1.0.tgz(r-4.3-emscripten)
forestError.pdf |forestError.html
forestError/json (API)
NEWS

# Install 'forestError' in R:
install.packages('forestError', repos = c('https://benjilu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/benjilu/foresterror/issues

On CRAN:

inferenceintervalsmachine-learningmachinelearningpredictionrandom-forestrandomforeststatistics

4.62 score 26 stars 16 scripts 406 downloads 2 exports 8 dependencies

Last updated 3 years agofrom:5d9c4b2d01. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:findOOBErrorsquantForestError

Dependencies:clidata.tablegluelifecyclemagrittrpurrrrlangvctrs